PENERAPAN DATA MINING MENGGUNAKAN ALGORITMA FREQUENT PATTERN - GROWTH UNTUK MENENTUKAN POLA PEMBELIAN PRODUK CHEMICALS

نویسندگان

چکیده

Dalam mengembangkan bisnis perusahaan distribusi produk chemicals, penerapan teknologi informasi menjadi sangat penting untuk menjamin kelancaran penjualan kebersihan yang ditawarkan. Perusahaan dihadapkan pada tantangan memberikan pelayanan terbaik kepada pembeli Menerapkan rencana efektif menghindari kerugian. Oleh karena itu, Untuk meningkatkan ditawarkan, harus mencari strategi bagus. Algoritme FP-Growth merupakan salah satu opsi algoritme alternatif bisa dipakai pola kombinasi produk. Selain dalam mengontrol dan mengelola persediaan, menentukan data akurat. sabun, teknik dapat digunakan adalah mining. hal ini, Algoritma Fp-Growth ialah pengembangan dari algoritma Apriori menggunakan konsep pohon frequent itemset sering dibeli. Pola belanja terbentuk berpengaruh besar terhadap Proses analisis Metode dimulai dengan menjaring membuat aturan asosiasi beberapa muncul. Dengan memformulasikan FP-Tree mengurangi penggunaan memori, mempermudah pencarian interaksi membantu menetapkan pemasaran lebih baik.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pattern-growth Methods for Frequent Pattern Mining

Mining frequent patterns from large databases plays an essential role in many data mining tasks and has broad applications. Most of the previously proposed methods adopt apriorilike candidate-generation-and-test approaches. However, those methods may encounter serious challenges when mining datasets with prolific patterns and/or long patterns. In this work, we develop a class of novel and effic...

متن کامل

Big Data Frequent Pattern Mining

Frequent pattern mining is an essential data mining task, with a goal of discovering knowledge in the form of repeated patterns. Many efficient pattern mining algorithms have been discovered in the last two decades, yet most do not scale to the type of data we are presented with today, the so-called “Big Data”. Scalable parallel algorithms hold the key to solving the problem in this context. In...

متن کامل

Frequent Pattern Mining in Web Log Data

Frequent pattern mining is a heavily researched area in the field of data mining with wide range of applications. One of them is to use frequent pattern discovery methods in Web log data. Discovering hidden information from Web log data is called Web usage mining. The aim of discovering frequent patterns in Web log data is to obtain information about the navigational behavior of the users. This...

متن کامل

Frequent Pattern Mining Algorithms for Data Clustering

Discovering clusters in subspaces, or subspace clustering and related clustering paradigms, is a research field where we find many frequent pattern mining related influences. In fact, as the first algorithms for subspace clustering were based on frequent pattern mining algorithms, it is fair to say that frequent pattern mining was at the cradle of subspace clustering—yet, it quickly developed i...

متن کامل

Frequent Pattern Mining in Data Streams

Frequent pattern mining is a core data mining operation and has been extensively studied over the last decade. Recently, mining frequent patterns over data streams have attracted a lot of research interests. Compared with other streaming queries, frequent pattern mining poses great challenges due to high memory and computational costs, and accuracy requirement of the mining results. In this cha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: JATI (Jurnal Mahasiswa Teknik Informatika)

سال: 2023

ISSN: ['2598-828X']

DOI: https://doi.org/10.36040/jati.v7i1.6371